- Investigadores descubren una extraña partícula subatómica, el mesón Bs, que se comporta de forma única y puede explicar uno de los más grandes misterios del Universo.
Un grupo de investigadores de la Universidad de Syracusa acaba de anunciar una serie de importantes hallazgos sobre una extraña partícula subatómica, el mesón Bs, que podrían explicar por qué el Universo contiene mucha más materia que antimateria.
La cuestión de la “antimateria perdida” ha intrigado a los Físicos durante décadas. Según predicen los modelos vigentes, durante el Big Bang tuvo por fuerza que producirse una cantidad igual de materia que de antimateria. Pero en la actualidad todo lo que vemos a nuestro alrededor está hecho de materia.¿Dónde está, pues, la antimateria que falta?
Igual que la materia, también la antimateria está constituida por átomos y partículas. De hecho, a cada partícula de materia que existe le corresponde su propia antipartícula, que es exactamente igual a ella excepto por la carga eléctrica, que es la opuesta. Por ejemplo, la antipartícula del electrón es el positrón, la del protón se llama antiprotón, y así sucesivamente.
La cuestión de la “antimateria perdida” ha intrigado a los Físicos durante décadas. Según predicen los modelos vigentes, durante el Big Bang tuvo por fuerza que producirse una cantidad igual de materia que de antimateria. Pero en la actualidad todo lo que vemos a nuestro alrededor está hecho de materia.¿Dónde está, pues, la antimateria que falta?
Igual que la materia, también la antimateria está constituida por átomos y partículas. De hecho, a cada partícula de materia que existe le corresponde su propia antipartícula, que es exactamente igual a ella excepto por la carga eléctrica, que es la opuesta. Por ejemplo, la antipartícula del electrón es el positrón, la del protón se llama antiprotón, y así sucesivamente.
Aniquilación espontánea
Se da la circunstancia de que, cuando una partícula de materia entra en contacto con una de antimateria, ambas se aniquilan por completo en un súbito y luminoso fogonazo. Si un astronauta pusiera el pie sobre un hipotético planeta hecho de antimateria, todos sus átomos se desintegrarían al instante, al mismo tiempo que una cantidad equivalente de “antiátomos” del planeta haría lo propio.
Sin embargo, parece poco probable que existan planetas, estrellas o incluso galaxias enteras hechas de antimateria. Si así fuera, seríamos capaces de ver cómo ambas se aniquilan en la frontera entre la antimateria y la materia que las rodea. Y nadie ha visto jamás señal alguna de que algo parecido esté ocurriendo.
Sin embargo, en septiembre de 2006 un equipo de físicos del Fermilab descubrieron en su laboratorio un tipo de partícula, el mesón Bs, que hasta ese momento había sido solo una posibilidad teórica. Se da la circunstancia de que el mesón Bs tiene la extraordinaria capacidad de oscilar entre una partícua de materia y una de antimateria. Es decir, que puede ser, alternativamente, materia y antimateria.
El extraordinario hallazgo prometía abrir las puertas de una nueva física hasta ahora desconocida. Por eso, comprender mejor las características de este extraño mesón se ha convertido en uno de los principales objetivos del experimento LHCb, en el CERN, el laboratorio de Física más importante del mundo, con sede en Ginebra. Los físicos del LHCb llevan a cabo complicados experimentos que intentan aclarar lo que sucedió durante los primeros instantes del Big Bang, y cómo la materia que hoy nos resulta tan común logró crearse y extenderse por todo el Universo.
Fue precisamente allí, en un taller celebrado en el CERN, donde el profesor Sheldon Stone acaba de anunciar sus hallazgos. “Muchos experimentos internacionales -afirma el científico- están interesados en el mesón Bs porque es una partícula que puede oscilar entre materia y antimateria. Comprender sus propiedades podría explicar la violación de la simetría CP, que se refiere a la necesidad de que exista un equilibrio entre materia y antimateria en el Universo y cuyo aparente incumplimiento es uno de los mayores desafíos de la física de partículas”.
Se da la circunstancia de que, cuando una partícula de materia entra en contacto con una de antimateria, ambas se aniquilan por completo en un súbito y luminoso fogonazo. Si un astronauta pusiera el pie sobre un hipotético planeta hecho de antimateria, todos sus átomos se desintegrarían al instante, al mismo tiempo que una cantidad equivalente de “antiátomos” del planeta haría lo propio.
Sin embargo, parece poco probable que existan planetas, estrellas o incluso galaxias enteras hechas de antimateria. Si así fuera, seríamos capaces de ver cómo ambas se aniquilan en la frontera entre la antimateria y la materia que las rodea. Y nadie ha visto jamás señal alguna de que algo parecido esté ocurriendo.
Sin embargo, en septiembre de 2006 un equipo de físicos del Fermilab descubrieron en su laboratorio un tipo de partícula, el mesón Bs, que hasta ese momento había sido solo una posibilidad teórica. Se da la circunstancia de que el mesón Bs tiene la extraordinaria capacidad de oscilar entre una partícua de materia y una de antimateria. Es decir, que puede ser, alternativamente, materia y antimateria.
El extraordinario hallazgo prometía abrir las puertas de una nueva física hasta ahora desconocida. Por eso, comprender mejor las características de este extraño mesón se ha convertido en uno de los principales objetivos del experimento LHCb, en el CERN, el laboratorio de Física más importante del mundo, con sede en Ginebra. Los físicos del LHCb llevan a cabo complicados experimentos que intentan aclarar lo que sucedió durante los primeros instantes del Big Bang, y cómo la materia que hoy nos resulta tan común logró crearse y extenderse por todo el Universo.
Fue precisamente allí, en un taller celebrado en el CERN, donde el profesor Sheldon Stone acaba de anunciar sus hallazgos. “Muchos experimentos internacionales -afirma el científico- están interesados en el mesón Bs porque es una partícula que puede oscilar entre materia y antimateria. Comprender sus propiedades podría explicar la violación de la simetría CP, que se refiere a la necesidad de que exista un equilibrio entre materia y antimateria en el Universo y cuyo aparente incumplimiento es uno de los mayores desafíos de la física de partículas”.
Quark y antiquark
Los investigadores creen que, hace unos 14.000 millones de años, la energía del Big Bang se fue transformando en cantidades idénticas de materia y de antimateria. Pero a medida que el Universo se enfriaba y se expandía, su composición fue cambiando. Tras el Big Bang, toda la antimateria desapareció dejando tras de sí a la materia ordinaria, a partir de la cual se fueron creando las primeras estrellas y galaxias, y todo lo demás hasta llegar a la Tierra y a las formas de vida que hay en ella.
“Algo tuvo que ocurrir -afirma Stone- para causar esta violación de la simetría CP y, por consiguiente, formar el Universo que podemos ver en la actualidad”.
Stone está convencido de que parte de la respuesta está, precisamente, en el mesón Bs, que está formado por un antiquark y un quark extraño (una de las familias de los quarks) a los que mantiene unidos gracias a la interacción fuerte. Como se sabe, los quark son los componentes fundamentales de otras partículas, como protones y neutrones, dentro del núcleo atómico.
Stone y su equipo han estudiado a fondo los resultados de dos experimentos llevados a cabo en 2009 en el Fermilab, en Chicago, donde se encuentra otro de los aceleradores de partículas más grandes del mundo.
“Los resultados de esos experimentos – explica Stone- mostraban que las oscilaciones materia-antimateria del mesón Bs se desviaban de lo predicho por el Modelo Estandar de la Física, pero las propias incertidumbres alrededor de esos resultados eran demasiado altas como para llegar a conclusiones sólidas”.
Así que el investigador, junto a sus colegas, no tuvo más remedio que desarrollar por sí mismo una nueva técnica que le permitiera tomar medidas mucho más precisas del mesón Bs. Y sus nuevos resultados muestran que las oscilaciones del mesón Bs entre materia y antimateria son, exactamente, las que predice el Modelo Estandar.
Stone afirma que las nuevas mediciones restringen enormemente los “reinos” en los que esa nueva física podría esconderse, lo que obligará a los investigadors a ampliar sus búsquedas en otras áreas. “Todo el mundo sabe que existe una nueva física -dice Stone-. Sólo necesitamos llevar a cabo análisis más sensibles para lograr olfatearla”.
Fuente: abc.es
Los investigadores creen que, hace unos 14.000 millones de años, la energía del Big Bang se fue transformando en cantidades idénticas de materia y de antimateria. Pero a medida que el Universo se enfriaba y se expandía, su composición fue cambiando. Tras el Big Bang, toda la antimateria desapareció dejando tras de sí a la materia ordinaria, a partir de la cual se fueron creando las primeras estrellas y galaxias, y todo lo demás hasta llegar a la Tierra y a las formas de vida que hay en ella.
“Algo tuvo que ocurrir -afirma Stone- para causar esta violación de la simetría CP y, por consiguiente, formar el Universo que podemos ver en la actualidad”.
Stone está convencido de que parte de la respuesta está, precisamente, en el mesón Bs, que está formado por un antiquark y un quark extraño (una de las familias de los quarks) a los que mantiene unidos gracias a la interacción fuerte. Como se sabe, los quark son los componentes fundamentales de otras partículas, como protones y neutrones, dentro del núcleo atómico.
Stone y su equipo han estudiado a fondo los resultados de dos experimentos llevados a cabo en 2009 en el Fermilab, en Chicago, donde se encuentra otro de los aceleradores de partículas más grandes del mundo.
“Los resultados de esos experimentos – explica Stone- mostraban que las oscilaciones materia-antimateria del mesón Bs se desviaban de lo predicho por el Modelo Estandar de la Física, pero las propias incertidumbres alrededor de esos resultados eran demasiado altas como para llegar a conclusiones sólidas”.
Así que el investigador, junto a sus colegas, no tuvo más remedio que desarrollar por sí mismo una nueva técnica que le permitiera tomar medidas mucho más precisas del mesón Bs. Y sus nuevos resultados muestran que las oscilaciones del mesón Bs entre materia y antimateria son, exactamente, las que predice el Modelo Estandar.
Stone afirma que las nuevas mediciones restringen enormemente los “reinos” en los que esa nueva física podría esconderse, lo que obligará a los investigadors a ampliar sus búsquedas en otras áreas. “Todo el mundo sabe que existe una nueva física -dice Stone-. Sólo necesitamos llevar a cabo análisis más sensibles para lograr olfatearla”.
Fuente: abc.es
No hay comentarios:
Publicar un comentario